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Abstract. Most parallel systems on which MPI is used are now hierar-
chical: some processors are much closer to others in terms of interconnect
performance. One of the most common such examples are systems whose
nodes are symmetric multiprocessors (including “multicore” processors).
A number of papers have developed algorithms and implementations that
exploit shared memory on such nodes to provide optimized collective op-
erations, and these show significant performance benefits compared to
implementations that do not exploit the hierarchical structure of the
nodes. However, shared memory between processes is often a scarce re-
source. How necessary is it to use shared memory for collectives in MPI?
How much of the performance benefit comes from tailoring the algorithm
to the hierarchical topology of the system? In this paper, we describe an
implementation based entirely on message-passing primitives but that
exploits knowledge of the two-level hierarchy. We discuss both rootless
collectives (such as Allreduce) and rooted collectives (such as Reduce),
and develop a performance model. Our results show that for most col-
lectives, exploiting shared memory directly will bring small additional
benefit, and the places where shared memory is beneficial suggest design
approaches that make best use of a pool of shared memory.
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1 Introduction

Most modern parallel computing systems have a hierarchical structure, often
with several levels of hierarchy. For years, these systems have been composed of
a (possibly hierarchical) high-speed network connecting many symmetric multi-
processor (SMP) nodes with a handful of processor cores on each node. While
node counts will likely increase in many HPC systems, core counts per node are
expected to increase dramatically [18] in the coming years. As this trend contin-
ues, the current approximation of “one process per node” that is currently used
by many MPI collective algorithm implementations [15] will become increasingly
inaccurate.

Optimized collectives that make use of shared memory have been developed
for many of the collectives defined by the MPI Standard [7]. This approach has
two disadvantages. The first is that sharing memory is difficult and error prone.
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Shared memory does not behave portably between different architectures or even
between different operating systems on the same architecture. Shared memory
is often a scarce resource; it may also be a persistent resource as in the case of
System V shared memory.

The second disadvantage to this approach is that shared-memory algorithms
often require careful tuning and can be extremely sensitive to architectural
specifics. Furthermore, algorithms that work for shared memory generally will
not translate into solutions for other instances of non-uniformity such as a hier-
archical network.

On platforms where shared memory is the fastest communications substrate
for message passing, most MPI implementations already use shared memory
for point-to-point communication [1]. In this paper we posit that building MPI
collective algorithms based on point-to-point messages and taking into account
the hierarchical structure of a system provides a general and portable way to
achieve performance that is nearly optimal.

2 Related Work

Much work has been done in the areas of both hierarchical and shared mem-
ory collective algorithms. Hierarchical algorithms are discussed in the context
of wide-area network (WAN) MPI implementations in [4–6]. The WAN/LAN
collectives scenario is analogous to the network/shared memory scenario dis-
cussed in this paper. Of particular note, [5] provides a flexible parameterized
LogP model for analyzing collective communication in systems with more than
one level of network hierarchy.

Sanders and Träff present hierarchical algorithms for MPI Alltoall [10, 17]
and MPI Scan [11] on clusters of SMP nodes. Other than their effort, most
hierarchical work has centered around algorithms for MPI Bcast, MPI Reduce,
MPI Allreduce, MPI Barrier, and MPI Allgather.

Graham and Shipman recently investigated techniques for performing intra-
node, shared-memory collectives in [2]. This includes improved shared-memory
algorithms for MPI Bcast, MPI Reduce, and MPI Allreduce. However, an impor-
tant conclusion from that work is that shared memory collectives remain fickle
and difficult to implement efficiently because performance is highly dependent
on characteristics of a particular architecture’s memory subsystem. Non-uniform
memory architectures, cache sizes and hierarchy, together with process placement
greatly influence the performance of shared-memory collective algorithms.

Implementations that combine both hierarchical and shared memory collec-
tives are discussed in many works [12, 14, 16]. None of these papers clearly sepa-
rate the mostly orthogonal issues of knowledge of hierarchy from the availability
of shared memory as a communication substrate. This makes it difficult to un-
derstand the impact of hierarchical knowledge alone on now-common clusters of
SMP nodes.

Wu et al. provide an excellent discussion [19] of SMP-aware collective algo-
rithm construction in terms of shared-memory collectives, shared-memory point-
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to-point communication, and regular network communication. Their algorithmic
framework also overlaps inter-node communication with intra-node communica-
tion. This approach generally pays the largest dividends in the case of medium-
sized messages, where the message is large enough to amortize the additional
overhead introduced by the non-blocking communication, yet is small enough
that it is not dominated by the inter-node message transfer time. We do not
examine this optimization in the work presented here.

3 Algorithms and Implementation

In the rest of the paper we identify the MPI collectives as belonging to one of two
groups: one for routines which have a distinguished root (such as Bcast or Re-
duce), which we call “rooted;” and one for those routines without a distinguished
root (such as Allreduce), which we call “rootless.”

Our hierarchical algorithms for broadcast, reduce, allreduce and barrier have
similar structures:

1. If necessary, perform local node operation and collect data in the master
process of each node, such as in broadcast and barrier. Here master process
means the representative of the node, which is the only process participat-
ing inter-node communication. We select the master processes as the lowest
ranked process on each node in the communicator passed to the collective.
This information is determined at communicator creation time and cached
in the communicator object for later use by the collective routines.

2. Perform inter-node operation among all the master processes. Send/collect
data from/to the root in rooted collectives, or send/collect data in all the
master processes.

3. If necessary, perform local node operation such as broadcast data received
in step 2 from master process to other processes in the node.

We can easily implement hierarchical algorithms for many collectives, because
non-hierarchical collectives can be used in for both intra-node and inter-node
phases of communication. A few operations, such as scan, are more difficult; we
discuss scan Section 3.5.

3.1 Broadcast

We have two implementations for hierarchical broadcast: one is a non-pipelined
version which has the same algorithm as described above in the overview. The
other is a pipelined version that divides a long message into segments with the
same size and then broadcast those segments in a pipelined manner.

In the pipelined implementation, we use a binomial-tree algorithm in the
local node broadcast and a binary-tree algorithm in the inter-node broadcast.
Assume the segment size in the pipelined implementation is s, which is chosen as
5KB by default. When the message size is less than s, the only difference between
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pipelined and non-pipelined is the tree structure of inter-node broadcast. When
the message size is larger than s, we pipeline the broadcast of different segments
and therefore can overlap their communication.

Theoretical Analysis of the Pipelined Implementation When the mes-
sage size is less than s, there is only one segment. The cost is composed of that
of the inter-node broadcast and local node broadcast. Suppose the node number
is p and every node contains c cores. The inter-node broadcast cost is between
log(p)∗tinter and 2log(p)∗tinter, and the actual value depends on the percentage
of the ping-ping latency in the one-way ping-pong latency for the network. If the
fraction is α, the cost is (1 + α)log(p) ∗ tinter . The local node broadcast cost is
log(c) ∗ tlocal. Here, tinter and tlocal are the inter-node and local node one time
transmission cost of the message.

When the message size is larger than s, there is more than one segment.
Using more than one segment allows different segments to overlap each other in
inter-node communication. If nseg is the number of segments and t0 is the time
to broadcast one segment, the total cost is not nseg ∗ t0 but nseg ∗ t1. Here t1
is the part of t0 that cannot be overlapped by the pipeline, such as the end of
the whole broadcast. This total cost can be further simplified to β ∗ s ∗ nseg,
which equals β ∗ lmsg. Here, lmsg is the length of message and β is inter-node
transmission rate.

When the message size is larger than s, the local node broadcast is similar
to the inter-node broadcast. The cost is approximately βlocal ∗ lmsg, where βlocal

is the local node transmission rate. By comparing the local node cost and inter-
node cost, we see that inter-node transmission cost becomes dominant since β is
typically ten times or more of βlocal. Therefore, using shared memory provides
only a small benefit because it only reduces local node collective cost. Similar
results hold for reduce, scan, and allreduce because our hierarchical algorithms
for those collectives have similar properties. Table 1 sumarizes our measured
results for a wide range of collective operations.

3.2 Reduce

Our hierarchical reduce first performs a local node reduce among the master
processes of each node, then reduces the temporary result among all the master
processes. We have both pipelined and non-pipelined implementations. In the
pipelined implementation, we choose different algorithms for the local node re-
duce based on the message size, which is the same as non-hierarchical reduce.
In the inter-node reduce step, we use a binary tree similar to the pipelined smp
broadcast.

3.3 Allreduce

Allreduce and Barrier are rootless collectives. Their hierarchical algorithms are
the same as described in the overview. Allreduce has three steps:
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1. Perform local node reduce to collect the partial result in the master processes
of each node.

2. Allreduce on the partial result among all master processes to get final result.
3. Broadcast the final result within the local node.

3.4 Barrier

The hierarchical barrier has three steps:

1. Local node barrier.
2. Inter-node barrier across master processes of all nodes.
3. Release the local node processes with a 1-byte broadcast. The reason we are

broadcasting 1-byte message instead of 0-byte is that, as an optimization,
our broadcast doesn’t perform actual send/recv when message size is 0, and
the overhead of sending this extra byte is low.

3.5 Scan

Scan is a rootless collective, whose hierarchical algorithm is quite different from
broadcast. Our algorithm requires that all the processes in the same node have
consecutive ranks. The algorithm has these four steps:

1. All processes participate in an inclusive-scan on their local node, which yields
a partial result on every process.

2. In step 1, the process with minimum rank (which we call the master pro-
cess) on each node already has the partial result from the process with the
maximum rank on the local node because we are exchanging data using a
binomial tree algorithm.

3. All master processes participate in an exclusive-scan. At this point all master
processes have all the data needed to compute their result.

4. All master processes broadcast the data collected in step 3 within the local
node. All processes compute their final result.

4 Performance Experiments

All performance results presented in this section were gathered on a 16-node,
quad-core AMD Opteron cluster at Argonne National Laboratory. A modified
version of MPICH2 [8] was used. Each collective was measured at a variety of
data sizes and process counts using the SKaMPI [9] MPI benchmarking software.
For rootless collectives, the time on the plot represents the value of the “result
time” field reported by SKaMPI; that is, the total time for the collective across
all processes.

For rooted collectives, a separate measurement was taken for each root, and
the minimum, median, and maximum “result time” are plotted with the mini-
mum and maximum as plot whiskers. The difference between the minimum and
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Fig. 1. Two schedules for a 16-process binomial broadcast algorithm using root=0 (a)
and root=1 (b). Numbers in the node label indicate the process rank in the communi-
cator. The solid edges indicate faster intra-node communication and the dashed edges
indicate slower inter-node communication.

the maximum serves as an indicator of the performance variation with differ-
ent root selections for a given algorithm. This is a much more rigorous method
of performance testing for rooted collectives because, for certain systems and
certain roots (especially the commonly chosen root 0), a topology-ignorant al-
gorithm may result in an optimal or nearly-optimal communication schedule
entirely by accident. Figure 1 is an example of one such scenario. Two commu-
nication schedules are shown for the same algorithm but using different roots.
Schedule (b) will require more time to complete than schedule (a) because there
are three inter-node messages in the longest path (b1, b9, b13, b15, b0) instead
of the maximum of two inter-node messages in schedule (a).

One could claim that the nearly optimal schedule chosen when the root of
the broadcast is 0 covers the most common case (broadcast from rank 0). How-
ever this “happy accident” will only occur for the binomial algorithm when the
number of processes on a node is a power of two. Unfortunately, non-powers of
two are not uncommon and are becoming more common as we look to the future.
For example, Intel has introduced a six-core Nehalem processor [3]. Similarly,
the SiCortex machine has six-cores per node [13]. It is also possible to arrive
at this situation by creating a communicator that contains a non-power-of-two
number of processes from some or all nodes.

4.1 Broadcast

Figures 2, 3, and 4 show the performance results for broadcast, including the
comparison between non-smpcoll broadcast and smpcoll broadcast. The theo-
retical performance is calculated using α = 1/3. From these experiments, we see
that an advantage of smp bcast is that the cost is independent of the choice of
root.
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Fig. 3. 256KiB MPI Bcast times
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Fig. 4. 1MiB MPI Bcast times
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Fig. 5. 4B MPI Scan times

4.2 Scan

Figures 5, 6, and 7 show the performance results for our new scan algorithm com-
pared to the existing non-hierarchical scan algorithm in MPICH2. Hierarchical
scan has a better performance in all the cases. When message size is 256KiB and
1MiB, we achieve up to 20 times improvement as shown in figure 6 and 7.

4.3 Reduce, Allreduce and Barrier

Figures 8, 9, and 10 show the performance results for reduce. The theoretical
model is calculated in the same way as with broadcast. Our pipelined hierarchical
reduce and nopipelined hierarchical reduce have similar good performance when
message size is 4 bytes, which is the same as broadcast. In figure 9 and 10,
pipelined hierarchical reduce shows an overall better performance against the
other algorithms.

Figures 11 to 14 show the performance results for allreduce and barrier. As
shown in Figures 11 and 12, hierarchical allreduce has better performance in
most cases. It has an overall better performance when message size is 1MiB.
Hierarchical barrier provides an approximately 100% improvement in all cases.
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4.4 Are Shared-Memory Optimizations Worthwhile?

For all of the collective algorithms discussed here, the inter-node communication
time dominates the overall communication time. By measuring the time spent
in the inter-node phase of the collective and assuming an ideal (zero time) intra-
node phase we can use Amdahl’s Law to obtain a lower-bound for total collective
time when using a shared-memory collective algorithm. Table 1 lists values for
selected collective algorithms with 64 processes on 16 nodes with various data
sizes. It is clear from this analysis that while shared-memory collective algorithms
may improve performance somewhat, the vast majority of the performance is won
via algorithmic awareness of the system’s hierarchy.

Even for nodes with more processes, we believe a more detailed performance
model will show that, at least for long messages, the performance benefit of using
shared memory will be small.

5 Conclusions and Future Work

Our results show that significant performance benefits can be realized by exploit-
ing the hierarchical nature of the interconnect topology. For many of the collec-
tive routines, particularly those that do not make many copies of the same data
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(which Bcast does), our performance models suggest that for the long-message
case, directly using shared memory will not significantly improve performance
beyond what exploiting the topology achieves.

For short messages, where overheads dominate, using shared memory may
offer a relatively greater advantage. This suggests an implementation strategy
that uses small amounts of shared memory for short data transfers within an
SMP node for collectives, switching to message-passing for longer data transfers.
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